On uniform nullcontrollability and blow-up estimates
نویسنده
چکیده
The paper looks at some of the techniques (separation of variables, Fourier series, Carleman estimates) used to obtain observability and nullcontrollability results to determine qualitatively the asymptotic behavior of the estimates obtained with respect to relevant parameters. We are particularly concerned with blow-up as the control time becomes short (T → 0).
منابع مشابه
A note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملUniform Blow-Up Rates and Asymptotic Estimates of Solutions for Diffusion Systems with Nonlocal Sources
متن کامل
A note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملBlow-up properties for parabolic systems with localized nonlinear sources
This paper deals with blow-up properties of solutions to a semilinear parabolic system with nonlinear localized source involved a product with local terms ut = Δu+ exp{mu(x,t)+nv(x0 ,t)}, vt = Δv+ exp{pu(x0,t)+qv(x,t)} with homogeneous Dirichlet boundary conditions. We investigate the influence of localized sources and local terms on blow-up properties for this system, and prove that: (i) when ...
متن کاملHigher derivatives estimate for the 3D Navier-Stokes equation
In this article, a non linear family of spaces, based on the energy dissipation, is introduced. This family bridges an energy space (containing weak solutions to Navier-Stokes equation) to a critical space (invariant through the canonical scaling of the Navier-Stokes equation). This family is used to get uniform estimates on higher derivatives to solutions to the 3D Navier-Stokes equations. Tho...
متن کامل